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ANOMALCUS DISPERSION IN GASES DERIVED FROM THE OPTICAL DEPTH
Theoretical treatment; 1line by line calculaticns

1 INTRODUCTION

This report describes the high resolutiion wave numouer dependence of
the refractive index in gases. The wave number dependence of the
refractive index is caused by the ability of a gas to absorb and emit
glectiromagnetic radiation. Knowledge of the spectral absorption {(or
the optical depth) is the basis for refractive index calculations in
this report.

The spectral ahsorption can be calculated from the quantity optical
depth. The spectral behavior of the optical depth is mainly described
by the spectral iine shape function. The correct 1ine shape function
is not known, but the approximations of Voigt, Lorentz and Doppler are
normaily used for calculation of spectral absorption. These approxi-
mations will alsc be usaed in this report for the refractive index
caiculationsl, They give a correct descriptiurn of the line shape near
the resunance wave number but far away from resonance they are not
correct. This effect has greater implications on the accuracy of cal-
culated refractive index than calculated absorption due to differences
in the spectal behavior.

Line by line calculation of absorption at a certain wave number is
norrally performed by only taking into account the influence from
transitions "nearby" the given wave number. The contribution to the
absorption from the "wings" of distant transitions is neglected. This
approximate calculation of absorption gives fairly good results
bz2cause the line shape function falls off rapidly (~(¢-04)~%) with

th2 distance from the resonance wave number (o0j).

1A correct 1ine shape function would, among other effects, have to
teke the effect of line coupling into account. This effect will not
be discussed in this report.

-




Line by line calculation of refractive index leads to a somewhat dif-
ferent situation with respect to accuracy than encountered in the cal-
culation of absorption. The reason is that the contribution to the
refractive index from the "wings" of distant transitions is much
greater due to the slower fall off (~(0-0;5)"*) with the distance from
the resonance wave number. This means that calcuiation of the refral-
tive index at a given wave number requires that the contribution from
the "wings" of all resonance transitions are taken into account. When
dealing with atmospheric refractive index especially the contribution
from the very strong UV-transitions has to be taken into account both
in the visible, infrared and u-wave part of the spectrum.

A computation of the refractive index as outlined above is not treated
in this report although the theoretical recults of Chapter 4 are
suitabie for such computation provided the Voigt or Lorentz line shape
function is used. The result from such computation will have limited
value due to the validity of the distant "wings" of the line form
functions. The computations in this report is performed by only tak-
ing into account the contribution to the refractive index from raso-
nance transitions in a limited wave number interval centered around
the wave number of interest (i e a procedure analogous to the one
described for caiculation of absorption). The result from these com-
putations will therefore unly give the Tocal wave number dependence of
the refractive index; more commonly named the anomalous dispersion due
to resonance transitions. This quantity is in this report called the
dispersion and is denoted An.

For the atmospheric refractive index an empirical formula has been
developed by Ed1én (1) based on measurements in the visible part of
the spectrum. This formula with corrections for 2tmospheric
temperature, humidity and pressure is also widely used for calculation
of atmospheric refractive index in the infrared, u-wave and even
radio-wave part of the spectrum. The accuracy of these results is
however questionable since the basic measurements are only performed
in the visible. 1t is however reasonable to believe that Edlén's for.
mula expresses the total contribution to the refractive index from the
"wings" of distant strong transitions especially the very strong
UV-transitions in the atmospheric spectrum. The coarse (low




resolution) wave number dependence of atmospheric refractive index is
then described by Edlén's formula whilst the fine s.ructure (high
| resolution) wave number dependence is described by the dispersion
derived in this repcrt. A sum of these twe quantities is then an
estimate of the total atmospheric refractive index. The contribution
tn this sum from the dispersion is small in the visible and infrared

part of the spectrum. In the wave number reginn below 400 cm~! the
dispersion is important near the resonance transitions. This situation
will be demonstrated and discussed in Chapter 6.

The calculations in this report is motivated by the fact that there
already exists a computer code performing line by line calculations

of the optical depth. The code is named Fast Atmospheric Signature
Code (FASCOD), and is developed by the U S Air Force Geophysics
Laboratory (AFGL). 1n Chapter 5 it will be shown how line by line cal
culations of the dispersion can be performed within the framework of a
modified FASCOD.

This report consists of two main parts: A theoretical development of
the expression for the dispersion (Chapter 2-4) and an implementation
of the theoretical result in FASCOD (Chapter 5-6).

In Chapter 2 it is shown how the dispersion can te expressed in terms
of the optical depth by means of the linear susceptibility and the

L Kramers-Kronig relations. The formulation of the optical depth used
in this paper is discussed in Chapter 3. An explicit expression for
the dispersion is calculated in Chapter 4.

A theoretical development analogous to the one described in this report
is given by Tomiyama (2). The theoretical result in this report has
nowever a more general validity since no approximations are needed
during the development. This gives an exact expression for the dis-
persion when the Voigt, Lorentz or Doppler 1ine shape functions are
used.

In Chapter 5 it is shown how the expression for the dispersion can be
simplified to facilitate implementation within the framework of
FASCOD.




Results from calculated amtospheric dispersion in various wave number
regions are presented and discussed in Charter 6. The calculated
results are compared with the measurements of Liebe (3).

2 DISPERSION AND OPTICAL DEPTH

This chapter describes how the dispersion can be expressed in terms of
the optical depth by means ¢of the linear susceptibility and the
Kramers-Kronig relations.

The linear susceptibility, x{w), is a complex quantity describing the
relationship between an external electric field, ?, and the
polarizition, 3; that is induced by the electric field. When the
medium is isotropic the linear susceptibility is a scalar, and the
pciarization is given by

Bos () = (x'(w) + 1x"(@))E (2.1)

where x'(w) is the real- anmd X"(w) the imaginary-part of the suscept
bility. w is the angular frequency.

In this context we sha!l assume a plane wave propagation for the
polarization B

d .
B oo oy oeifwtkz) oo (2.2)
2
P is the compliex magnitude and x = k'+ik" is the complex propagation
constant with real part x' and imagninary part «k".

The large scale macroscopic phenomena of absorption, emission and dis-
persion of 1ight are the results of transitions between the various
atomic or mojecular energy levels. The equation of motion for the
electric and polarization fields in an isotropic medium are derived in
Pantell (4). When a plane wave solution of the form (2.2) is assumned,
the equations of motion gives the following expression for the propa:
gation constant, «




~N
[}
—

K? = ﬂ;:_“}’_i[l*l(%(gl] 2.

In Equation (2.3) n is the contribution to the propagation constant
from transitions outside the frequency interval considered for deter-
mination of the susceptibility (i e the transitions that are not taken
into account in the calculations). The value of n is equal to unity
if the contribution from all transitions in a gas is accounted for in
the the determination of the susceptibility.

Equation (2.3) is solvea by taking the square root and assum-

ing (x(w)/n?) << 1 so that the expansion {i+X(w)/n?]% = 1+x(w)/2n?
holds (which is the case for other than very strong transitionsj). Ihe
result for the complex propagation constant is

: o - nw X Cowx"(w)
K- w4 ik [1+ 17) + i ch (2.4)

The real and imaginary part of the propagation constant is then given
by:

e B ol (2.5)
and

v Wx(w)
K = omc (2.6)

Since the optical depth, k(w), is defined with reference to the
absorption of radiant power it can be shown (4) that the imaginary
part of the propagation constant 1s related to the optical depth by

K(w) = - 2" = ‘%C-M (2.7)

The refractive index, n(w), in the medium is defined as the ratio
between the phase velocity in empty space, ¢, and the phase velocity
in the medium, vg. By definition the phase velocity in the medium is

Ve = o (2.8)

The relation between the refractive index and the real part of the
susceptibility is then




The dispersiin as defined in this report is
Ar{w) = l%i%l (2.10)
The Equations {2.7) and {2.10) connecting the imaginary and real part

of the suscept*bility to respectively optical depth and dispersion,
are the fundamental equations in this report.

By using the connections between angular frequency and wave number
(w « 2mco) these equations can be rewritten

X' {a) (2.11;

k(o) = - 210 X (a) (2.17;

The purpose of this chapter is to express the dispersion in Equation
(2-11) by the optical depth in Equation (2.12}.

As stated by the Kramer-Kronig relations (4) the real and imaginary
pdart of the susceptibitity are Hilbert transformed pairs. Mathemat:
cally this can be expressed ¢~

x' (o) - Hlx"(0)] (2.13)

il

X" (o) Hlx' (o)) (2.14)

The Hilbert transform, H| f(x)], of a function f(x) is defined by

Mool = 2ee g L) g0 (2.15)

where PP means that the principal part of the integral is to be
evaluated.

From Equations {2.12) and (2.13) the relationship between the real
part of the susceptibility and the optical depth is
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K(o) = - Hl- S k(o)) = I wiked) (2.16)

The Equations (2.11) and (2.16) then establish the following relatron
between the adispersion and the optical depth

pno) = 4= H[&Ql 2.1

The retationship expressed by Equation (2.17) is the basis for the
descripticn throughout the rest of this report.

in norder to evaluate the Hilbert transform in Equation (2.17) the

explicit wave number dependence of the optical depth must be known.
This pronlem wili be addressed “n the following chapter.

THE OPTICAL DEPTH FORMULATION

This ¢hapter contains a formulation of the optical depth which takes
into daccount the molecular processes ¢f absorption and stimulated
amission, The explicit wave number dependence oy the optical gepth s
41su described both for the voigt, Lorentz and Doppler line shape
functions. The aim of this chapter is to define that nart of the
optical depth wrich has to be Hilbert tranfo-mec 1in order to calculate
the dispersion and to define the Voigt, Lorentz and Doppler dispersion
functions.

The optical depth formulation of Van Vleck and Huber (5), will be used
in this paper. In this Jvormulation the optical depth k(o) 5f a
mixture of different gases can be expressed in the following form (6)

k(o) = o tanh B%) T w(m.) 3,(1) [f(0,0,) + f(-0,0,)] (3.1)
ij 4

where

W(mj) - Number density of meclecular species mj (molecuie/cm?®)

gj(T) - Line strength of the i'th transiticn a2t the itemperature 1

{cm?/molecule)

24
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f(o,0 ) - Line shape tunction (cm)

0 - Wave number (cm™!)

95 - Resonance wave number for the i'th transition

B - = hc/kT; where T i< temperaiure and hc/k is the se:ond

radiation constant (1.4388 cm-K)

~

The line strength, S;(T), in Equation (3.1) has a specific value for
g. h resonance .ransition belonging to the different molecular species
in the gas mixture. The temperature dependence of the line strenqth
15 given by the a.sumption of thermal equilibriu~; i e a Maxwell-
Balizmann _istribution of molecules in the excited states and the
dssocrated partition functions.

This formulation of the optical depih satisfies three important .rop
erties independent of the iine shape function, These properties are
satisfied even if the fluctuation dissipation theorem for detailed
radiation balance is not (5). The properties satisfied by fquation
(3.1) are:

d) rthe generalized Nyquist theorem; i e transition strengths are
preserved, and radiation balance between emission and absorption 1«
satisfied in thermal equilibrium (7).

b) The Kramers-Kronig relations, (5) and (8).

¢) Tre f sum rule; which *s equivalent to the validity of the familiar
formula (gp-pqg) = i1h/2n of matrix quantum algebra (5).

This means that Equation /3.1) should be valid for a1l wave numbers
provided the dipole approximation is valid and a ciassical despribticn
of the radiation field is adequate. The accuracy of the calculated
optical depth 1s only deperdent of the quality of the approximate Tine
shape function.

In Chapter 2 the connection between dispersion ana optical depth is

expressed by Fauacion (2.17). By introducing the coptical depth in
Equation (3.1) the dispersion can be expressed ty

(o) = 3= I W0u )3 (N[F0.0,) + 6(0,0,)] (3.2)
ij
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where

's
F{o.0,) = H[tanh (%_) ‘ f(o,oj)] (3.3)

1
. Bo . . '
G{o.c.) = H|tann (5=) - f(—o,oi)] (3.4)
H- 1 is the Hiribert tranform.

To calculate the Hilbert tranforms described by Equations (3.3) and
{3.4) 1t 15 necessdary to introduce an explicit expression for the line

shape function, f{o,04).

In order to obtain a theoretical result for the dispersion which con-
tain the 1nfluence of both homogeneous and inhomogeneous line broaden-
yng mechanisms the Voigt 1i1ne shape function is used for the theoret:
tdl calculations n this report. The Voigt line shape is a convolu-
tron of the Lorentz line shape describing homogeneous broadening due
to melecular collisions and the Doppler Vine shape describing
nhomogeneous broadening due to the distribution of molecular
velocities. The Voigt tine shape function is described as

/ X
n2 1 1

.+,°
a
fv(0‘01) = -—n—ec—l-'iﬁﬁ—_m EXD[’]”Z ('c

-0
d d

1y Jdx (3.5)

The Lorentz and Doppler line shape functions are defined by

_ L a

folo,0o0) = o (3:5:77—:-37 (3.6)
VALY 095 2

fq(0.0) =V ==+ = exp [-1n2 (—5) Jdx (3.7)

d d

where

a - Lerentz half width (HWHM)

a4 - Doppler half widt (HWHM)

The half widths are dependent of molecular species and the thermo-
dynamic situation in the gas mixture. The Doppler line width is also
proportional to the resnnance wave number. At standard atmospheric

.
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temperature and pressure the Lorentz 1ine width is normally much
greater than the Doppler line width.

The Voigt line shape in Equation (3.5) is easily obtained by a convo-
lution of the Lorentz and Doppler line shapes in Equations (3.6) and
(3.7) (regarding the wave number difference o-0; as free variable)
followed by a simple change of variable.

M

fv(o,oi) fQ(o-oi) * fd(o-oi)

+=

ih
e

folo-os-y) » fL(y)dy (3-8)

=

= fQ(o»x) . fd(x-oi)dx

-

By using the notation in Equations (3.6) and (3.7) the last expres-
£ions in Equation (3.8) can formally be written

 Sad

f (0.0} = { f

v 0,X) - fd(x,oi)dx (3.9)

- Q(
The notation in Equation (3.9) means that the variable indicated (with
x) in the Lorentz and Doppler line shape functions shall be substi-
tuted by the integration variable prior to integrations. This type of

notation is convenient at a later stage in this report.

The Voigt line shape functions is within the approximations of Lorentz
and Doppler line broadening mechanisms a reasonable description of the
line shape (to a certain distance from the line center) for most values
of temperature and pressure in a gas mixture. However at two extreme
situations the Voigt formula can be simplified since (9)

Tim fd(o,oi) = 8(0-01) (3.10)
a ~0

d

1im f _(0,0.) = §&(0-0,) (3.11)
as0 L i i

where §(+) is the Dirac §-function.




i4

The Equations (3.10), (3.11) and (3.9) leads to the following Timits
for the Voigt line shape function when the half widths tends to zero

;iTo fv(o,oi) = fQ(o.oj) (3.12)
d
gig fv(o‘oi) = fd(o~oi) {3.13)

Equation (R.12) describes a situation where homogeneous (Lorentz)
broadening completely dominates over inhomogeneocus (Doppler)
broadening, i e the high pressure regime. Eguation (3.13) describes
the low pressure regime when aq >> a. Since the natural line
hroadening due to spontaneous processes is a homogeneous broadening
mechanism Equation (3.13) is only a good approximation for the low
pressure regime when the Doppler line width is much greater than the
natural iine width; ag >> ap. The natural line width is given by

1

a_ = (c=1n)" (3.14)

n

where 1pn is the natural lifetime.

To make this theoretical development valid for both the high and Tow
pressure regime the Voigt line shape function is used in Equation
(3.<j. The fact that fy{-0,0y) = fy{o -04) {which is obvious by
change of variable in Equation (3.5)) gives the following expression

for the dispersion

tn(o) = o= ig W) (MIF (0,00) + F (0,-0,)] (3.15)
where

F,(0,0,) = H[tanh (g—°) f,(0.0,)] (3.16)
Fo(0,-0,) = Hltanh (§9) £ (0,-0.)] (3.17)

From the definition of the Hilbert transform in Equation (2.15) and
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the Voigt line shape function in Equation (3.5) an expiicit expression
for Equation (3.16) is

VAL W Bo, *Tl a0 iain2 (e yex
F lo,04) = V/—;— 5; H[tanh(2 _£ 7 Toox)7sa? &XP [-1n2 ¢( T ) ldx]
(3.18)
/w2 1YY e..Bo 1 a ] %0
S R 1 ‘Ritanh(55) e o o yrrgzloexp [-1n2 ( T, ) lox
(3.19)
The Hilbert transform in Equation (3.19) is given by:
: - go, . 1 a
Folox) = Hf tanh 7)) * 3 o 75g 1
4=
1 1 Bo', 1 a |
T ppwj 575 W G g ey Tear 99
2 Lo T tann (B2yet (00 k) do (3.20)
n o'-0 2 [ AR i

the integratl in Equation (3.20) will be calculated in Chapter 4 by
analytic continuation and complex integration. The high and low pres
sure ltimits for the dispersion are found from the limits of Equation
{3.16) using (3.12) and (3.13)

+.O
| N S U U L -
Fl(o,oﬁ) z ATTO Fv(o,oi) o PP_i 5 tanh( 5 ) fl(o 'Oi) do
d (3.21)
Fq(0.05) = 1im F (0,0.) = 1 op s h tanh(a—‘z") + £4(0",0,) do'
a 0 - (3.22)

The functions Fv(°’°1)'F£(°’°1) and Fd(°’°i) will in the rest of this
report be called the Voigt-, Lorentz- and Doppler dispersion functions.

A comparison of Equations (3.21) and (3.20) shows that the high pres-
sure 1imit of the dispersion is readily calculated line by line from
Equation (3.15) as soon as the integration in (3.20) is performed and
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the variable x is substituted by the resonance wave numbers 0;- At
intermediate pressures the integration described by Fquation (3.19)
must be performed before a 1ine by line calculation of the dispersion
can be evaluated.

A calculation of the integral in Equation (3.19) is difficult within

the framework of FASCOD therefore the mumerical examples given in this
report will mainly concentrate on the high pressure regime.

4  THE HILBERT TRANSFORM OF THE OPTICAL DEPTH

The purpose of this chapter is to calculate an explicit expression for
the dispersion based on the optical depth formulation in Chapter 3 and
the Voigt line shape function.

The development in Chapter 3 showed that the following Hilbert trans-
form nas to be calculated in order to determine the dispersion.

+
1 1 Bo', . a |
n PP {. 5= tanh (&) (0" -x)7+a? do (4.1)

F

=

2(G.XJ =

By using the rotation F(o') for the intergrand in Equation (4.1) the
evaluation of the principal part of the integral is by definition

1 0-¢€ o
Folo,x) = = lim { J F(o')do'+ [ F(o')do'} (4.2)
€20 Rl 0+€

To be able to evaluate the integral of Equation (4.1) a continuation
into the complex plane will be made. By defining a closed contour of
integration it is possible to use the residue theorem from complex

analysis to evaluate the integral. The contour of integration which
is used here is shown in Figure 4.1. It is called C, and it consists
of the curves [,I'' and I.
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[ R Re{o’}
X-iQ

Figure 4.1 The integration contour C in the complex plane which is
used in the evaluation of the integral in Equation (4.1)
The poles of the integrand of Equation (4.1) are indi-
cated by the symbol ©

The curve I' in Figure 4.1 is a semicircle in the upper halfplane with
radius R. 1t meets with the real axes at the points o' =-R and

o' = R, and it intersects the imaginary axes at the point ¢' = iR. In
appendix A it will be shown that the integrand of Equation (4.1) has
infinitely many poles on the imaginary axes. There is, however, a
finite distance unequal zero between these poles. This means that the
curve I can always be made to intersect between two such poles.2 In
the 1imit where R-+= the integral along the curve I" will tend to zero
since the integrand of Equation (4.2) goes to zero as R™?* for big|o'| .

The curve T'' is a small semicircle with radius ¢ centred in ¢'=0.
The integral along this curve will be evaluated for the limit €0 in
Appendix A.

The curve I consists of tws intervals on the real axis, namely
-R<o0's0-€¢ and o+e<o'<R, where €>0. In the 1imit R+= and e»0 the inte-

2This may of course slightly distort the value of the intergrand on
the semicircle I', but in the limit R+~ such a distortion will not
change the value of the integrai along T.
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gral along 1 is the principal part of the integral in Equation (4.1).
By means of the residue theorem the closed contour integral is given
by

n

J Flo*)do’ J F(o')do' + f F(o')do' + J F(o')do' =
C 1 r r

(4.3)

o The sum of the residues of |
& F(o') inside the contour C _

In the 1imit R+= and e-»0 the result is

- Yim [ F(o')do
e+0 I''

(4.4)

+o . N =
. . . [ The sum of the residues of
PP | Flo')do 7m [F(o‘) inside the contour C J

A detailed calculation of the right hand side of Equation (4.4) is
described in Appendix A, and the result is given in Equation (A.18).

The resuit for the Hilbert transform described by Equation (4.1) is

1 oo'7
o,x) = = PP [ F(o')do' =

FQ(

Al

1 (X_E;?+q7 [cosh%gg?ﬁggg(ﬁd) + % Im {w(%+i%i(x-ia))-w(%+i%i(x+ic))4

E

oy | Sosh e eakeTeg) ¢ 5 R {W(%+i%i(x-1a))+¢(%+i%i(x+1a))i

A

a { sin(Ba)

2 B
- i Re {W(%+1§§O)} (4.5)
The function Y(z) is the digamma function defined by
d 1
wz) = & Onr@) - B8 (4.6)

where I'(z) is the gamma function (9).

The Voigt dispersion function Fy(0,04) defined in Equation (3.19) can
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now be rewritten by Equation (4.5)

+

~N

In 1

Gd _

F 0.0,) = Fz(o,x) - exp [-1n2¢ )z]dx (4.7)

l

g 8

94

A notation equivalent to the one used in Equation (3.9) gives the fol-
towing compact formula for the Voigt dispersion function

+@
F (0.0) = ‘{ Folo.x) « f(x,0,)dx (4.8)

where fq(+,<) is the Doppler line shape function.

The high pressure 1imit for the Voigt dispersion function is found
from Equation (4.8) and (3.10)

im F (o,oi) = F

0,0,) (4.9)
a0

2(

The Lorentz dispersion function, Fg(o,05), is given by Equation (4.5)
when the variable x is substituted with the resonance wave number, o;.

The low pressure 1imit for the Voigt dispersion function is also found
from Equation {4.8) when the limit of Equation (4.5), as the Lorentz
half width, a, tends to zero, is determined. The limit of Equation
(4.5) is

L pann(8
;:6 tanh(z

Hir

1im F
a-o

Q(O'X) =

(4.10)

+ £ 5(x-0) « Refu(q + 152x) - (3 + B0}

The low pressure 1imit for the Voigt dispersion function is then

+
1
= tanh (8%) ,(x,0,)dx (4.11)

i

Tim F (0,0.) =
a0 v 1 _

§ 8

Since the integrand in (4.11) diverges where x=0 the integration must
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be performed by calculation of the principal part. In this respect
Equation (4.11) is identical to Equation (3.22) defining the Doppler
dispersion function, v.i.2

1im F (0,0.) = F (0,0.) (4.12)
a0 v i d i

An explicit expression for the Doppler dispersion function will not be
calcualted in this report.

At this stage it is useful to remind oneseif that the dispersion,
An(o), given by Equation (3.15) has the following form

—

an(o) = 4= i% W(mj)51(T)[Fv(o.oi) + F lo,-0)] (4.13)
By using Equations (4.5} and (4.9) it is now possible to give an
expiicit expression for the dispersion in the high pressure 1imit

an(o) = = ¥ W(m,) 3,(T) |2 i 1 (o) a - T, (0.0
4n g jhoT m ioj-oi’ + a’ 1'% (o0,-0)%+a AR

1

0.+0
1 L 1 a
t oo i) g (0,%0)T+a? T,(0,0.) (4.14)

The functions Ti(+) and Tp(-,+) are easily identified from Equation
(4.5). To establish Equation (4.14) the following relations are used

T1(-04) = -T1(o4)
T2(0,-04) = T2(0,04) (4.15)

The well known anomalous dispersion form due to a resonance transition
is recognized from the first term in Equation (4.14).

To illustrate the wave number dependence of the different terms in
Equation (4.14) the four terms (exclusive the Ty and T functions) are
plotted separately for two different resonance wave numbers

(64 = 1 cm~! and o4 = 100 cm-1) in the Figures 4.2 and 4.3. The
Lorentz half width and the temperature are 0.1 cm-! and 296 K. The
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value of the functions Tj(oy) and T2(0,0i)g=g; 15 given (on the
figures) for each resonance wave< number.

Figure 4.2 illustrates the situation when the resonance wave number 1s
I cm!? The numbers refering to the different curves indicate the
term number in Equation (4.14).

O,=1cm’

Q =01 cm’
B (296K) = 4.86-103¢cm
Ti(0,) =243103
15{0,0,) =2.431 0

Wave number, ¢m'!

Figure 4.2 Wave number dependence of the different terms in Equation
(4.14) for resonance wave number 65 = 1 cm~!
The functions Ty(oj) and T§16,5§70=01 have the values

| indicated

For the discussion of the results in Figure 4.2 the following symbolic
representation of the wave number dependent part of Equation (4.14) is
| useful (Assuming Tp(g,04) is a slowly varying function when o=04)

1= @ - 1100)) + @ ~ Tyl04,0)) + @) + Ty(0) + @ - T,(0,,0,)
(4.16)

The results in Figure 4.2 shows that the peak value of the first term
in Equation (4.16) is dominating. The peak values of the second and
third term are about one and two orders of magnitude less than the
first term. The value of the fourth term is negligible.

At this point some comments about the values of the functions Tj(oy)
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and Tp(0j,04) given in Figure 4.2 are worthwhile. Disregarding the
diagamma function (this approximation is discussed in Chapter 5) these
functions are given by:

sinh(soi) Boi Boi )
Ty(o5) = cosh(Bo,)+cos(Ba) ~ tanh(—7) ~ — (4.17)

sin(Ba) - Ba . Ba
cosh(801)+cos(8a) cosh(Boi)+1 2

T2(0,01) = (4.18)

when Ba << 1 and Boy << 1.

The values of Ty(oj) and T2(0y,04) given in Figure 4.2 are exactly
reproduced by the approximations (4.17) and (4.18). The very low
value of Ti(o4) (=2.43-10-3) indicates that at this low resonance wave
number stimulated emission 1s an important process with regard to dis-
persion (and absorption).

Figure 4.3 illustrates the situation when the resonance wave number :s

100 cm-1,
\ (\—/alue, om I
4 0,=100 cm™'
a =0,1cm’’
3 B (296K) =4.86-103cm
T4(0y) =024
® T2(0,0i) =2.31.10°%
2 €
/@ and @
1
c - . + - [
97 98 99 100 101 —— 102103 — 104
. Wave number, cm’’
-21

Figure 4.3 Wave number dependence of the different terms in Equation
(4.14) for resonance wave number 64 = 100 cm ¥

The functions Ty(oy) and Tg(o,o{jo=oi have the values
indicated
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The results in Figure 4.3 shows that the peak value of the first term
in Equation (4.16) is dominating with at least two orders of magnitude
over the other terms.

The values of Tq(oj) and Ty(o0j,04) stated in Figure 4.3 are almost
exactly reproduced by the approximations (4.17) and (4.18). The vaiue
of T1(oy) (0.24) has increased by two orders of magnitude indicating
the reduced importance of stimulated emission as the resonance wave
number increases.

The part of the approximations in (4.17) and (4.18) which are valid

when only Ba << 1 shows that Ty(oi) » 1 and Tp(0,05) = O when the re
sonance wave number increases. For gy > 500 cm™*, Ti(o3) > 0.84 and
12{0,04) < 8.5-10"5 when the temperature is 296 K.

As a result of this discussion it is reasonable to assume that, at
standard atmospheric pressure (Lorentz broadning dominates) and
temperature, the dispersion in the infrared and visible part of the
spectrum 1s well approximated by

0.-0
- L . 7 . i
An(o)} = in? ]%: W(mj) S‘i(T) m (4.19)
The result in Equation (4.19) could easily be obtained by doing the
following approximations in the expression for the optical depth
(Equation (3.1)) tanh(Bo/2) = 1 and f(-0,03) = 0 prior to the Hilbert
transformation,

A general line by line calculation of the dispersion valid for differ.
ent pressures and temperatures may in principle be implemented by
means of the Equations (4.5), (4.7) and (4.13). However, the presence
of the digamma function in Equation (4.5) makes such an implementation
rather awkward. In the next chapter approximations that simplify the
expression of Equations (4.5) and (4.7) will be made. The validity of
these approximations in different domains of wave numbers and thermo-
dynamic parameters will be discussed, One of these approximatians

will be implemented as a computer program for line by line calculation.
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5  APPROXIMATIONS AND IMPLEMENTATION TN FASCOD2

The aim of the work described in this chapter is to develop an
approximation for the dispersion formulas calcuiated in Chapter 3
whicn is suitable for 1ine by line calcuilation within the framework of
FASCOD?2 (10).

Tte first part of this chapter will mainly discuss the importance of
the dirferent terms in the dispersion formulas especially the Loren.z
Jdispersion function given by Equations (4.9) and (4.5). The result of
this discussion will establish certain domains for the resonance wave
numbers and tne the.modynamic parameters where different approxima-
tions for the Lorentz dispersion function are valid.

The second part of “his chapter describes one specific approximation

and the impiementation of this approximation in FASCOD2 for line by
line calcllation of dispersion.

5.1  Approxima*ions for the Lorentz dispersion function

The discussion in this part will concentrate on approximations for the
Lorentz dispersion function, Fg(o,04), given by Equation (4.9) and
(4-5). The rcason is that a valid approximation €or the Lorentz dis-
persion function also 1mply a valid approximation for the Voigt dis-
pers*an function given hy

4= X-0,
Folo0,) = /102, é; [ Fylou) + expl-1n2 (—agl)z]dx (5.1)

This statement requires that the exponentia: in Equation (5.1) has
diminishing values near the edge of the validity reqion for the
approximate Lorentz dispersion function. 1In other wo,ds the vali-
dity region for the approximate Voigt dispersion function will be
some Doppler half widths less than the validity region for the
approximate Lorentz dispersion function.
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From Equation (4.5), (4.9) ana (4.14) the (omplete expressions for
the Lorentz dispersion fungtions are

0.-0
1 [ 1 )
FQ(O-,O]-) = i —-—-—-—2———7(0,.-0) v . Tl(o }I‘ z——-—}— TZ(O’O’])
(5.2)
1 0,+0 ! o
£ (o,-oj) = IO Tl(o R T_—-_TT' . 72(3,01)
where
sinh(Bo.) o "
(0 < FosniBe Trcas(Ea) M (WU Zloy-iad)- Y(#aaB (0, +10))]
(5.3)
!?(0‘01 ) C02;n8805+cp (8 )*‘Re fy %+ l—(Oi—ic))+¢(%+%%(o +ia))}

- %Re fy (s %%o)}

In nrder to do a line by line computation of dispersion based on the
Voiqgt dispersion function, Equation (5.1), or even the Lorentz disper
stun function, the functions Ty(oy) and Tz(o0,04) are rather awkward.
Especiilly the digamma functions with complex arguments.

1t 15 therefcre necessary to analyse the value of the terms in Ecua:
tion (5.3) in order to determine a domain of resonance wave numbers
and t..crmodynamic parameters where the digamma functions can be
neglected. This analysis js described in detail 1n Appendix B. The
result is given in Equation (B.10) stating that the diagamma func-
tions can be neglected when

sinh(aoj)
cosh(Boi)+cos(8a)

> %, Ba (5.4)

Since the value of B<a (= hc/kT-a) normally is much less than one (in
atmospheric physics B+a < 10°%) the inequality (5.4) is equivalent to
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o, > Z arctanh (%7 Ba) =

‘ 3 (5.5)

:uc»
Q

tn atmospheric physics the maximum value of the Lorentz half width is
ot the order 0,5 cm™*. A neglection of the digamma functions is then
3 valid approximation when

o, » 0,3 cem? . (5.6)
1

This means that the digamma functions have some infiuence on atmos-
pheri1c dispersion for resonance transitions in the wavenumber interval
up to ~1 ¢cm~}, In the visible and infrared wave number domain the
influence of these functions are of no importance, but atmospheric
influence on electromagnetic radiation with wave number less than

I ¢cm™! (corresponding to a frequency of 30 GHz) is of great importance
1n many technological applications.,

wWhen the inequality (5.4) holds it is possible to define approximate
vo13t and Lorentz dispersion functions, Fya(o,04) and Fga(0,04)

+O
Foalo.0) = {’ Foalo.x)f (x, 0, )dx (8.7)
where
fo(x'oi) - The Doppler line shape function
1 90 1 a
Faal0:0y) = g Zoi-05’$57 “Tial95) *+ 3 Zoi—o§’+a’ Toa(04)
(5.8)
sinh(Boi)
T1alo4)
cosh(801)+cos(8a)
(5.9)
sin(Ba)
Toaloy)

cosh(801)+cos(8a)

In order to get a picture of the importance of the different terms and




27

variables in the approximate Voigt dispersion function a computer
program that performs the integration in Equation (5.7) for one

single resonance transition is developed. In this case the dispersion
is given by the simplified formula

an(o) = 7= W(m.) 3, [F A(0,05) + F ,(0,-0,)] (5.10)

The programme calculates only the sum of the two approximate Voigt
dispersicn functions in Equation (5.10). This sum can be expressed as
a sum of a Dominating term, Fyap(o,04), and a Correcting term,
Fyacl(o,04}, v.i.z

FvA(o’oi) + FVA(O"Oi) = FvAD(o’ci) + FvAC(O’Oi) (5.11)
where
= 1 X-~0
FVAD(O’Oi) = {- TIA(X) 7 m fd(X,Oi)dX (5:\12)
e 1 X+0
Fuac0:09) = I Tal0 5 (oyragr fglxeop)dx
1 1 a 1 a
H T 13 oyrver 7 Tooymear | Talxe0p) o
(5.13)
X-0,
1n2 1 i
fq(x,00) = / B 0 exp[-1n2 (—ad—‘)z] (5.14)

The calculation of the sum in Equation (5.11) and the correcting term
in Equation (5.13) is done for two different thermodynamic situation.
One in the high pressure 1imit where the homogeneous (Lorentz) broad-
ening dominates and one in the intermediate regime where the homogene-
ous and inhomogeneous (Doppler) 1ine widths are equal. The calcula-
tions are done for two resonance wave numbers oy = 1 cm~! and

04 = 100 ecm=*. The Doppler 1line width used in the calculations is
adequate for a H70 molecule.
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The Figures 5.1 and 5.2 show both the sum of the dominating and cor-
recting term and the correcting term only for the two different ther-
modynamic situations when the resonance wave number is 1 cm™!.

Value, cm

P =1013mb. T = 296 K

Q =01em’
4 /FVAD +Fuac a4 (HZO) = 1.45~‘|0"6cm'1
o] =1em’!
3
2
1
4 — — —r— -
0 1 2 e— 3 4 5
B Wave number, ¢cm’!
-2

Figure 5.1 The total Voigt dispersion function (5.11) and the cor-
recting term (5.12) at standard temperature and pressure
when o4 = 1 cm™*

(8 = 4.86+10"% cm, Tya(03) = 2,43-1072%, Tpa(of) = 2.43-10°%)
\
3004 P =1.2102mb, T=231K
a =ag4{H0) =1.27.108m""!
O,:h:m"I
FvAD’FvAC\ 290
~
li:i::><::i1DOL
0.9;990 0.99995 Wave number, cm™’ 100005 ————— 1.00010
-1004
-2004
_3001[
Figure 5.2 The total Voigt dispersion function (5.11) and the cor-

recting term (5.12) when the Lorentz and Dopplier haif
widths are equal and g5 = 1 cm~!

(B = 6.23-10°7 cm, T{a(01) = 3,11:10-2,Toa(04) = 3.96-10°*)
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The big differences between the shapes and peak values in Figure 5.1
and 5.2 are mainly due to the five order of magnitude change of the
effective 1ine width. This is also the reason for the vanishing cor-
recting term in Figure 5.2. When the results in Figure 5.1 and 5.2 are
used for calculation of the dispersion by Equation (5.10) (assuming

equa) line strength §1) the number density must be scaled preperiy by

the factor (p/pg):(To/T)). The resulting peak Zispersion is aimost

equal for the two situations.

Figure 5.3 and 5.4 <how almost the same situations as the preceeding
figures when the resonance wave number is 100 cm™?'.

'ne difference in shape and peak values between Figure 5.3 and 5.4 is
mainly due to the tree order of magnitude change of the effective l1ine
width. The correcting term vanishes in both situations mainly because
the resonance wave number is increased by two orders of magnitude.

The peak value in Figure 5.4 scaled by the number density factor is
almost equal to the peak value in Figure 5.3 resulting in about equal
peak dispersion for the two situations (assuming equal line strength

§'i)a

The peak value of the dispersion for resonance wave number 100 cm~?! is
however about two orders of magnitude greater than the peak value of
the dispersion for resonance wave number 1 cm~!. This is seen by com-
paring the peak values in Figure 5.1 and 5.3. (The same result is
obtained by comparing the peak values of Figure 5.2 and 5.4 after
proper scaleing by the number density factor). The reason is that the
value of the function Tya(04y) i5 almost linear with wave number in this
region. This again demonstrates the reduced importance of stimulated
emission with increasing resonance wave number.
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x10°? {Value, cm l

4 P=1013mb,T = 296 K
Qa = 0.1em™!
3 a,(H20) = 1,45:10%m!
Fuap + Fuac [ oi = 100 ¢m’
\\ 24
Fvac
1
96 98 Wave number,cm’! 102 o104

Figure 5.3 The total Voigt dispersion function (5.11) and the cor-
recting term (5.12) at standard temperature and pressure
when o4 = 100 cm™*

(B = 4.86-10-7 cm, Tja(0j) = 0.24, Taa(oj) = 2.31-107%)

r
300k P=11mb,T = 217K
a =Gg (H20) = 1.28-10%m™"
g;=100 em?
Fvap + Fvac_ 200f
&‘00
99.990 99.995 Wave number, cm™! 100.005 = 100.010
-100-
-200
-3001

Figure 5.4 The total Voigt dispersion function (5.11) and the cor-
recting term (5.12) when the Lorentz and Doppler half
widths are equal and o4_= 100 cm™*

(B = 6.63-10-F cm, T1a(0y) = 0,33,T2a(04) = 8.22-1077)
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5.2 Implementation in FASCOD2

The discussion in this part will concentrate cn the implementation of
an appropriate formula for line by line computation of dispersion by a
sliahtlv modified FASCOD2.

For 1ine by 1ine computation of absorbtion the Voigt line shape func-
tion of Equation (3.5) is used. This necessitates a numerical inte-
gration to achieve each value of the Voigt line shape. To speed up
this integration process a special algorithm has been developed based
on the fact that the Voigt 1ine shape has a "fall off" ~ (0-01)'2 dis
tant from the line center while the inhomogenous (Doppler) broadning
is important near the line center.

This algorithm will probably not give a correct result for the
approximative Voigt dispersion function of Equaticn (5.7) since the
dominating term has a "fall off" ~ (c-oi)'1 (see Equation (5.12)) dis
tant from the line center. To implement the Voigt dispersion function
in FASCOD2 a new a]gorilhm for numerical integration has to be
developed. This problem is not addressed in this report.

Cue to the lack of a new numerical integration algortihm only the
approximative Lorentz dispersion function has been implemented in
FASCOD2. The implemented formula for line by line computation of
dispersion is )

1 = g
bn(o) = 5= i? w(mj) 5,(T) [FQA(O’01)+F2A(°"°1)] (5.15)
where
Fop(0,0,) = = b T, (0,)+ < T..(0.) (5.16)
QAN T T (0,-0)%+a 1AV ' Zoi-o$’+a’ 2A'YY4 , *
Fo(0-0) =t 10 ¢ (0,)4% —3—7 T..(0.) (5.17)
AN T n 301+05’+d’ 1AV " (oi+o) +a‘ 2A‘\7H *
sinh(Boi)

T1aloy) = cosh{Bo,)+cos(Ba) (5.18)
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1

_ sin(Ba)
24%1) * TosH(Bo, ) +cos(8a) (5.19)

B = hc/kT

a - Lorentz half width (HWHM); function of temperature and pressure

The connection between the line strength, §1(T), in Equation (5.15) and
the line strength, Si(T), filed on the HITRAN molecular database (11) 1s

S (T)

z 1
51(T) = -——T (5.20)
o, tanh(—z—)

The units of the HITRAN line strength is cm/molecule.

Equation (5.15) should give an adequate description of the dispersion
in a mixture of gases when the following conditions are fulfilled:

a) The dipole approximation and a classical description of the
radiation field are valid

b) Line coupling effects are negligible

c) Homogenous (Lorentz) broadning is dominant

d) The resonance wave number ¢ 2 1 cm-1

The theoretical description in this report makes it possible to defeat
condition d) by introducing the digamma functions in Equations (5.18)

and (5.19), and condition c) by developing a new numerical integration
algorithm for the Voigt dispersion function.
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6 LINE BY LINE CALCULATION OF ATMOSPHERIC DISPERSION

This chapter describes results from some line by line calculations of
atmospheric dispersion by FASCOD2 modified according to Eguations
(5.15)-(5.19). Four results are presented and discussed. These
results show the atmespheric dispersion in different wave number
regions at different spectral resolution for the Midiatitude summer
model, i e temperature 294 K, pressure 1013 mb and a water content of
14 g/m3 at ground level.

Figure 6.1 shows a result where the contribution to the dispersion
steems mostly (though not totally), from one single transition in the
water molecule with resonance wavenumber o = 1684.837 cm~! and
Lorentz half width a = 0.0962 cm~*.

WAVELENGTH (MICROMETER)
5938 5937 5936 5935 5934 5933

-

5.932

128 OS5~ - o7 T o T T e s et T e

8.0E - 06

4.0 - 06

o —_——

DISPERSION

40E 06
8.0E - 06
1.28-05 S

1684 1685
WAVENUMBER (CM - 1)

1636

Figure 6.1 The atmospheric dispersion at ground level in the wave
number interval 1684-1686 cm~' for the Midlatitude sum-
mer model,

The main contribution to the dispersion is from a transi-
tion in the water molecule with resonance wavenumber
g = 1684.837 cm-!,

The result in Figure 6.1 shows the classical dispersion connected to
one single resonance transition. The maximum and minimum value of the
dispersion in Figure 6.1 are




34

An

max 3.9-10"* (6.1)

&rin

[}

-1.0-10"*% (6.2)

For this single 1ine in the infrared part of the spectrum it is easy
to verify the result in Figure 6.1 from Equation (4.19). For a single
1ine Equation (4.19) is modified to read

~ 0.- 0
an(o) = a7 + W(m)- S(T)- IR (6.3)
1

By introducing the HITRAN line strength from Equation (5.20) and the
approximation tanh(801/2)=1 in the infrared at standard temperature,
Equation (6.3) is modified to

U_-I- 0

05- 0)* + a*

An(0) = zo7 + - - ( CW(m) ¢ S(T) (6.4)
1

The maximum and minimum value of Equation (6.4) occur when the wave
number is equal to 05 + a and the peak values of the dispersion are

W(m) - S,(T)

SR S
Mmax,min” -4 o, +a (6.5)

A

when

= .+ e
%max,min~ %i% @ (6-6)

The number density of water molecules and the line strength on the
HITRAN data base for this transition gives the following value for the
product of number density and line strength

W(m,) + S,(T) = 0.1304 cm"? (6.7)

Wave number and value for the peak dispersion calculated from Equation
(6.5) and (6.6) is
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- . -8
Anmax,min‘ + 1.0-10 (6.8)
- -1
Omax> 1684.741 cm
Omin = 1684.933 cm™? (6.9)

The calculated result in (6.8) and (6.9) are in very good agreement
with the results presented in Figure 6.1. Wave number and value for
the minimum dispersion have the best agreement due to less influence
from another resonance line at lower wavenumbers in the rASCODZ
calculations.

The conclusion from the preceeding comparison between the FASCOD2
result and a theoretical result is that the implementation in FASCOD2
most probably performs a correct calculation of the dispersion.

Figure 6.2 shows the atmospheric dispersion in the wavenumber region
35-45 cm~*, where several transitions in the water molecule are con-
tributing to a rather complex result due to interference between dif-
ferent lines. The atmospheric model is still Midlatitude summer at
ground level.
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Figure 6.2 The atmospheric dispersion at ground level in the wave
number interval 35-45 cm~! for the Midlatitude summer
model.

Several transitions in the water molecule with different
line strength are contributing.
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The complex nature of the dispersion 1n Figure 6.2 is due to the
interference between a number of different water vapour lines with
different line strength. The peak dispersion in Figure 6.2 is about
one order of magnitude greater than the peak dispersion in Figure 6.1.
This effect can be infered from Equation (6.5) although this equation
is not strictly correct in this wavenumber region.

Figure 6.3 shows the atmospheric dispersion for the entire wavenumber

region 0-500 c¢cm~!. The majority of the "lipes" are due to transitions
in the water molecule.
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Figure 6.3 Atmospheric dispersion at ground level in the wave-
number interval 0-500 cm~* for the Midlatitude summer
model.

The main contribution to the dispersion steems from seve-
ral transition in the water molecule

The maximum and minimum value of the dispersion in Figure 6.3 is

1.06-10- for the resonance line near 150 c¢cm~'. By anticipating the
validity of Ed1én's formula, see (1), for dry air in the y-wave region

it is possible to calculate the maximum and minimum value of the
refractive index around ~150 cm~! for the gas mixture in this example.
Ed1én's formula corrected for a temperature of 294 K gives (o = 150 cm™!).
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(n-l)dry= 2.6-10°* (6.10)

The influence of water vapour on the refractive index then gives the
following maximum and minimum value for the refractive index of the
gas mixture near the wave number 150 cm~!

n 1.00132

= 1+ 0.26-10"* + 1.06-10"? = (6.11)
Mmin 0.99920
The calculations in (6.11) .show the rather peculiar result that the
minimum refractive index is less than unity. The calculatians ]
show that every resonance line in Figure 6.3 with a minimum val. for
the dispersion less than 2.6+10"* will exhibit a corresponding minimum
refractive index less than unity. The majority of the resonance lines
in this wave number region will, as seen from Ficure 6.2, exhibit this
pecularity. Whether these results are correct remains to be ceter-
mined by experiments.

Figure 6.4 shows the atmospheric dispersion in the wave number
interval 2300-2400 ¢m~! for the Midlatitude summer model, at ground
level. It is mainly the COp molecule that contributes to the disper-
sion in this wavenumber interval.

The structures of the dispersion in Figure 6.4 are due to the P- and
R-branch of viberational-rotational transition of CO2 centered at wave
number 2349.146 cm~}.

In this wave number interval the Edl1én formula gives the following
value for the refractive index of dry air (o = 2350 c¢m™?)

(n-l)dry = 2.7-10-* (.12)

The peak dispersion in Figure 6.4 are about two orders of magnitude
less than the Ed1én value. Resonance 1ines in this wave number region
therefore contribute negligible to the refractive index of air in the
Midlatitude summer model.
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WAVELENGTH (NICROMETER)
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Figure 6.4  Atmospheric dispersion at ground level in the wave number
interval 2300-2400 cm~' for the Midlatitude summer model.
It is mainly COp that contributes to the disperison in
this interval,

An overview of the dispersion for the entire wave number region
500 ecm~* - 15000 cm~* for the Midlatitude summer model is given in
Apperdix C.

The input data for FASCOD2 are as mentioned provided by t*e line data
base HITRAN. This database contains 1°ne data for molecular transi-
tions with resonance wave numbers in the wave number interval

0-17900 cm~*. In the wave number interval apove 5000 cm~! the disper-
sion is a very small quantity in air (less than 3-10-7 for the Mid-
latitude summer model). It has not been possible to find measureme..ts
with an ac-uracy that makes the verification of the fine structure of
our computatizns possible in this interval. Below 5000 cm~! there are
wave number intervals where the dispersion has a substantially higher
value. The most interesting domain, when it comes to compari.sns
between calculation. and measurements, is the wave number interval
0-500 cm~*. In this wave number interval the modified version of
FASCOD2 predicts that the value of the disperison is in the range
+1.2+10"* for the Midlatitude summer model.
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A paper by Liebe, (3), investigates a model made for the computat;on
cT attenrition 2nd dispersive delay in the wave number interval

u-33 cm~'. Comparisors between his model and measurements are done,
anc Liebe ciaims that 500d agreenment between model predictions and
field/laboratory experiments is obtained.

Figure 5.5 shows tne resuts from Liebe's model for the dispersion,
whilst Figure 6.6 shows *re dispersion calculated by the modified ver-
sion of FASCODZ. The 535 mixture and thermodynamic parameters are
identical.
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Figure 6.5 1he calcualted dispersion for air where the relative
humidity 1is 100%, the temperature is 303 K and the
pressure is 1013 mb. From Liebe. (3).
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Figure 6.6 The dispersion calculated by the modified version of
FASCODZ2.
The gas mixture and the thermodynami. parameters are
identical to those used by Liebe (3).
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A close comparison between the dispersion in Figure 6.5 and 6.6 shows
excellent agreement especially between the peak dispersion at
18.5 cm~! wave number.

The results presented in this chapter demonstrate that the modified
version of FASCOD2 performs a correct line by line calculation of the
dispersion due to resonance transitions when homogenous (Lorentz)
broadening is dominant.

7  CONCLUSIONS AND PROPOSITIONS FOR FURTHER RESEARCH

From the connection between the complex propagation constant of an
electromagnetic field in a medium and the complex linear suscepti-
bility, a Hilbert transform relationship between the anomalous dis-
persion and the optical depth has been established via the Kramer-
Kronig relations. Based on the van Vleck-Huber formalism for the
optical depth an explicit expression for the dispersion in a mixture
of gases is developed. This expression determines the dispersion
whether the line shape is described by the Voigt, Lorentz or Doppler
1ine shape functions.

The derived dispersion is valid for all wavenumbers provided the
dipole approximation is valid and a classical description of the
electromagnetic field is adequate. The effect of line coupling is not
taken into account. The Hilbert transformation of the optical depth
is performed without approximations.

The importance of the different terms in the derived expression is
visualized and discussed by numerical examples.

Since the complete expression for the dispersion is rather awkward for
numerical computations an approximation is developed. This approximate
expression for the dispersion is valid when the resonance wave number
for a transition is greater than 1 cm-1 (30 GHz). Numerical examples
of the approximate dispersion for a single resonance 1ine described by
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a Voigt line shape function is also visualized and discussed.

In order to perform a line by line computation of the dispersion in a
mixture of gases the computer code FASCOD2, developed by the US Air
Force Geophysics Laboratory (AFGL), has been modified. The modified
version of FASCCD2 only performs correct computation of the dispersion
when the gas pressure is in the regime where homogenous (Lorentz)
broadning is dominant and the resonance wave number is greater than

1 em-1,

gExamples of line by line calculated atmospheric dispersion for the
Midlatitude Summer model at standard atmospheric pressure are given.
One example shows that the calculated dispersion from FASCOD2 is iden-
tical to the theoretical result for a specific transition in the
infrared region. This result confirms that the modifications in
FASCOD2 are correct. Another example from the wave number region

1-33 em~l, is a comparison between the calculated result from FASCOD2
and the measurements of H J Liebe at the Institute for Telecommunica-
tion Sciences, USA. These two results are in excellent agreement.

The result from these two examples leads to the conclusion that the
theoretical expression for the dispersion derived in this report and
the implementation in FASCOD2 gives a correct line by line computation
of the dispersion in a mixture of gases when line coupling effects are
negliqgible.

In order to achieve increased confidence in the theoretical results
derived in this report a greater effort is needed. The rest of this
chapter is therefore devoted to propositions for further research.

Results from the existing modified FASCOD2 should be compared with
high resolution measurement of dispersion in different wavenumber
regions at different temperature and humidity.

In order to do tine by 1ine calculations for resonance transitions
<1 em-l (30 GHz) the neglected digamma functions in the Lorentz dis-
persion function should be incorporated in the existing 1ine by line
code. This would facilitate comparison between calculated and mea-
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sured dispersion for frequencies below 30 GHz; a frequency range of
great technological impoartance.

To get a complete description of the dispersion valid for all gas
pressures the Voigt dispersion function should be used by the computer
code. This requires the development of a fast numerical integration
algorithm for the calculation of the Voigt dispersion function.

The hypothesis that the refractive index of air in the visible and
infrared is the result of adding the "distant wing dispersion” due to
all strong UV-transitions, should be tested by the existing modified
FASCOD2. This requires that data for the relevant UV-transitions
exists on the HITRAN data base, and a change in FASCOD2 of the maximum
distance from the line center where the effect from a line is taken
into account. The result of this line by line calculation depends
heavily on the correctness of the Lorentzian "wings" but even a result
of the same order of magnitude as given by the Ed1én formula would be
an encouragement.
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APPENDIX A

DETAILS OF THE HILBERT TRANSFORMATION IN CHAPTER 4

Re{o'}

Figure A.1 The integration contour C in the complex plane which is
used in the evaluation of the integral in equation (A.l).
The poles of the integrand of equation (A.l) are
indicated by the symbol ©®

In Chapter 4, Equation (4.4), it was shown that in the limit where
R+=ande~»0

PP { F(o')do' = 2mi {The sum of the residues of

F(s') inside the contour ¢} - 1im J F(o')do!

e»o [

(A.1)

where

F(a') = tanh (%_0_5 7 (o -x)7+a?

Q

]
Q
Al

(A.2)

1 1 a 1
o'-0  0'-x-ia o'-x+ia

= tanh (%95

The integration of the function in Equation (A.2) along the curve T'
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can be evaluated as follows. The pole of F(o') at o'=0 is simple, so
that the Laurent series has the form

b, (o) -
"+ Ja(o-0)" (A.3)
n=0

F(o') =

o'-0

By doing the substitution
0'-0 =¢€eld (A.4)

the integral along I'' is given by

0 b.(0) : = 0
fFlotydot = 5 - jeeae+ T a "4 S e M84g
r T €e n=1 m
(A.5)
- n
- -mb (o) +5Ta . €" [1-¢-1)7]
1 n-1 n
n=1
In the limit €-0 one gets
1im [ F(o')de' = -wib,(0) (A.6)

e=»0 I

bi(o) is the residue of F(o') at o'=0. From Equation (A.2) this
residue is given by

Bo o}
X

b,(0) = res F(o') = tann (59) z EBaReTe (A7)

0'=0

In the 1imit e»o the integral along I'' is then

- ‘Ydo' = -mie Boy . 1,
ll? {'F(o )do' = -mwi-tanh(3) - 3 To-x)Tra? (A.8)
To evaluate the integral in Equation (A.l) the sum of the residues of
F{(o') inside contour C remains to be determined.

One of the poles inside the curve C is a simple pole at ¢' = x+iaq.
The residue of F(o') at this point is

B(x+ia), -1 1 1
res F(o') = tanh ( ) = T (A.9)
o' ox4ia 2 1 (x-0)+ia
The rest of the poles of the function F(o') in Equation (A.2) inside

the closed contour C 1ie on the imaginary axes. These poles are
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infinitly many, simple, and they steem from the factor tanh (Bo')/2 in
F(o'). This factor is singular when

B = 5 T (2n+1), n=0,1, 2, ... (A.10)
2 2
The residue of pole number n is
2 1 a
res F(o') = 5 . (A.11)
B .2n+l 2N+l o o
a'=‘22+1n i=g—n-o (i g T X)2+a

Note that this sequence of residues goes as n~? for big n, so that the
corresponding sum of residues converges. To find an explicit expres-
sion for the series one can use partial fraction decomposition and the
relation (12)

I ey T BV -v@) (A.12)

where Y(z) is the digamma function which is defined by

v(z) = & On 1) = gt (A.13)

['(z) is the gamma function (9).

The sum of the residues on the imaginary axis is after some algebra

E res F(o') =

n=o °,=12n+1"

b |4 b 905+ £ et - 3 by e + s

$ T b (5 o;l (A.14)

By using the Equations (A.8), (A.9) and (A.14) the result of the
integration is
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PP f F(o')do' = mi [tanh (%9) : rajigy;ay

+ 1 [tanh (B(xziql) % (X-éYIid

+ i [% TET%TITE Y% + %%(x-ia)) - % T3:%7:73 Y% + %%(x+iq))

L

1 2ia iB
, + = m; Y% + ﬁd) (A.15)

The principal part of the integral evaluated is by definition a reai
function, but a brief look at the right hand side of (A.15) can hardly
convince anyone that this is so. By rewriting (A.15) using the fol-
Towing, relations (13)

Im{y(B+iy)} = %u tanh (my) (A.16)
Y(1-z) - ¥(2) = 7 cotg mz (A.17)
| Y(z*) = y*(2) (A.18)
{
4 the result in (A.19) is obtained after some cumbersome algebra

PP f F(o')do' =

% (x-;ig45’ [“cosh?gz?iggi(edf + Im {y(% + %%(x-ia))-w(% * %%(x*id))}

T o [nzagﬁ%%§§%%%§?§3) + Re {W(# + PB(x-10))+9(% + 32 (xsia))]

- 2Re {y(% + %%0)} (A.19)

The result in (A.19) is obviously a real function.
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APPENDIX B
NEGLECTING THE DIGAMMA FUNCTIONS
In order to reduce the computational burden in the computation of the
Lorentz dispersion function it is necessary to establish an approxima-
tion where the digamma functions can be neglected. The Lorentz dis-

persion function defined by Equation (5.2} is:

Falo,04) =

—

)
i
|
|

Al

8 . iB .
5.~ 0)7+a” | Cosh(Bo;)+cos (Ba) + = Im{y (i (0,-1a) ) W (% +5r(0;+ia)) |

Al

;- 0 [ sini(Bo,) ;

+
S

+ 1 [ sin(Ba) Refy (42 (0. -1a) )4y (% B0 +i0):

(°i' 0)Z+a? cosh(801)+cos(8a)

2N

Refw(¥ + £ o)}] (8.1)

The desired approximation is:

) 05- © 'sinh(Boi)
Foalo,04) = = {0y~ 0)7 +a? cosh(Bo,) + cos(Ba)

a sin{8a)
(oi- 0)? + a? cosh(Boi) + cos(Ba) (8.2)

1
t 3

Note that the peak value of the second term in equation (B.2) will
only be of the same order of magnitude as the peak value of the first
term when the resonance wave number is small. However the wave number
dependence of the second term is such that it will always be unequal
to zero when the first term equals zero. This is why the second term
is kept for all resonance wave numbers.

The purpose of this appendix is to find the domain of resonance wave
number and thermodynamic parameters where the approximation (B.2) is
valid. 1In order to compare Equation (B.1) with Equation (B.2) the
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facters containing the digamma functions in (B.1) are expanded in
Taylor series.

Lim fwosr B3 iBoy - e - B34 i B0y -
% gxlm {W(x+12“ i e [ %% - (- g")] +0 (( 2)2) (B.3)
and
% Re {y(%+ %%+ '%— D+ Yk - —— + 1E—o ;) - 2w+ 180 } =
0((%%)’) + % ggRe fwx+in)}, - %;,(oi- o) + 0((o;- 0)?) (B.4)
B
Y=7n°%;

The Figures (B.l) and (B.2) show that

. d :
- 33 g Im {wix+iy)} , <O when y 20 (8.5)

This means that

- B0 Lm gy B2+ 1 B o) - v B i B ey <o (B.6)

r\)lm
=

for all resonance wave numbers °i'

The second term in the first [-] in Equation (B.1) is then negligible
compared to the first term when

sinh(Bci) 8q
))3—5
cosh(801)+ cos (Ba) T (B.7)
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‘Qd— Im {W(x+iy)}x=1
dx 2

0

Figure B.1 The function g; Imfy(x + iy)ix:% when 0 <y <9

\<ad7 Im {‘P(x+iy)}x=_‘|;

-

0

-3 '.-.

0 9 vy

Figure B.2 The function %; Imfg(x + iy)}x:,é when 0 <y < 90

The Figures (B.3) and (B.4) show that




d .
0 s gy Re fyx + 1 9}, <3 when y20 (B.8)

which implies that

38(0.- 0)
0 s 1re fys 53 1 & 0;)+b(4-B34s %ﬁoi)-Zw(%+i%% I ——r—
(8.9)

The fourth term in Equation (B.1) is then neglible compared to the
first term in (B.1) when

0= 0 sinh(Boi) a ) 38(01- o)

(o= o)+ a’ cosh(Bo,) +cos(Ba) > (o;- o) + a* 1

(B.10)

A simplification of Equation (B.10) yields

sinh (801) |
cosh (Bo,) + cos(Ba) ° wF (B.11)

Since the Equations (B.7) and (B.11) are identical the digamma func-
tions in (B.1) can be neglected when Equation (B.11) is satisfied.

3} dd—y Re {W(x + iy)}x:.;_

l-..
0 9y

Figure B.3 The function %y Refw(x + 1y)} , when 0 sy <9
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‘(Ed; Re {W(x +iy)}x=;]

34 -

0 __r__‘h
0 0y

Figure B.4 The function g; Ref{y(x + '__y)}x=,7é when 0 <y < 90




53

APPENDIX C

AN OVERVICZW OF ATMOSPHERIC DISPERSION IN THE WAVE NUMBER INTERVAL
500-15000 cm~!

This Appendix gives an overview of calculated atmospheric dispersion

in the wave number interval 500-15000 cm~!. The atmospheric model used
in these calculations is the Midlatitude summer model, (pressure

1013 mb, temperature 294 K).

The interval (0-500) cm~® is not presented here because Figure 6.1 cov-
ers this spectral range. The interval 15000-17900 cm~! is not shown
because the dispersion is sery small in this region (<<10°*).

EFach “jgure cove-s a broad interval of wive numbers. These figures
therefore gives only an impression of the magnitude of the dispersion
in the different wave number intervals. The dispersion varies about
four orders of magritude throughout the wave number interva'; from
about 107%-10"°,

WAVELENGTH 'MICROMETER)
18 15 12 9 6

81t 06

408 06

DISPERSION
o

408 06

8 0F 0h

126 05 - - - : .
500 1000 1500 2000 2500 3000
WAVENUMBER (CM - 1)

Figure C.1 The atmospheric dispersion for tne wave number interval
500-3000 cm~*., Midlatitude summer
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C.2 The atmospheric dispersicn for the wave number interval

3000-6000 cm~'. Midlatitude summer
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C.3 The atmospheric dispersion for the wave number interval

6000-9000 cm-T, Midlatitude summer
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C.4 The atmospheric dispersion for the wave number interval
9000-12000 cm~*. Midlatitude summer
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Figure C.5 The atmospheric dispersion for the wave number interval

12000-15000 cm~*'. Midlatitude summer




